طراحی و اجرای یک سیستم پشتیبانی تصمیم بالینی مبتنی بر هوش مصنوعی برای تشخیص زودهنگام و پایش اندومتریوز مزمن

Elnaz Bornasi * ℗, Mohammad Souri

طراحی و اجرای یک سیستم پشتیبانی تصمیم بالینی مبتنی بر هوش مصنوعی برای تشخیص زودهنگام و پایش اندومتریوز مزمن

کد: G-1892

نویسندگان: Elnaz Bornasi * ℗, Mohammad Souri

زمان بندی: زمان بندی نشده!

برچسب: سیستم های تصمیم یار بالینی

دانلود: دانلود پوستر

خلاصه مقاله:

خلاصه مقاله

Background and aims: Chronic endometriosis is a multifactorial condition often underdiagnosed due to nonspecific symptoms and variability in disease progression. This study aimed to develop an AI-driven clinical decision support system integrating clinical, imaging, and patient-reported data to improve early diagnosis and personalized monitoring. Method: A retrospective dataset was collected from gynecology clinics, comprising pelvic MRI scans, hormone profiles, surgical findings, and longitudinal symptom reports. Imaging data were analyzed using convolutional neural networks (CNNs) trained to detect characteristic radiological patterns. Clinical and patient-reported data were structured and processed using ensemble learning algorithms, primarily random forests and gradient boosting, to identify predictors of disease progression and flare-ups. Multimodal data fusion was conducted using feature-level integration, and system performance was evaluated via cross-validation using area under the curve (AUC) and F1-score metrics. Results: The AI system demonstrated enhanced sensitivity in detecting early-stage endometriosis when multimodal data were combined, with AUC improving from 0.78 (clinical-only) to 0.91. Flare-up prediction showed strong correlation with cyclical hormonal variations and specific imaging features (e.g., signal intensities on T2-weighted MRI). The inclusion of structured patient feedback enriched the system’s ability to personalize monitoring and anticipate symptom fluctuations. Conclusion: Integrating diverse types of patient data, including clinical, imaging, and self-reported measures, can significantly enhance the early detection and monitoring of chronic endometriosis. This comprehensive framework lays the groundwork for more personalized, proactive care models and highlights the value of systematic, longitudinal data collection in improving gynecological health outcomes.

کلمات کلیدی

Endometriosis, Clinical Decision Support System, Dianosis

بازخورد

نظر شما چی هست؟ بر روی ستاره های مورد نظرتون کلیک کنید.

0
  • Review rating
  • Review rating
  • Review rating
  • Review rating
  • Review rating
میانگین نمرات

دیدگاه ها (0)

تاکنون دیدگاهی منتشر نشده است. شما اولین نفر باشید!

ارسال یک دیدگاه