ردیابی اضطراب: نرم افزاری ساده برای تجزیه و تحلیل رفتار موش در آزمون میدان باز

Mehrdad Nourizadeh * ℗, Mobina Hoseinzadeh, Saeed Mohammadzadeh Mounesyar, Yalda Jalali, Mahdi Amirhooshangi, Zeynab Rasouli, Mehrdad Neshat Gharamaleki

ردیابی اضطراب: نرم افزاری ساده برای تجزیه و تحلیل رفتار موش در آزمون میدان باز

کد: G-1700

نویسندگان: Mehrdad Nourizadeh * ℗, Mobina Hoseinzadeh, Saeed Mohammadzadeh Mounesyar, Yalda Jalali, Mahdi Amirhooshangi, Zeynab Rasouli, Mehrdad Neshat Gharamaleki

زمان بندی: زمان بندی نشده!

برچسب: پردازش سیگنال های پزشکی

دانلود: دانلود پوستر

خلاصه مقاله:

خلاصه مقاله

Background and Aims: Anxiety-like behavior is widely studied in rodent models, with the Open Field Test (OFT) being a standard method for evaluation. Typically, reduced center zone exploration and increased thigmotaxis indicate heightened anxiety. Manual scoring is time-consuming and prone to bias, while commercial automated tools are often expensive. This study introduces RASAD, a lightweight, low-cost software developed to automatically assess two anxiety-related parameters from OFT videos: center zone time and total distance traveled. Methods: Eighteen adult male mice (8–10 weeks, 25–30 g) were divided into three groups (n = 6): (1) Control, (2) Citicoline-treated (100 mg/kg, i.p., daily for 21 days), and (3) Ketamine-treated (10 mg/kg, i.p., single dose, 30 min before test). Each mouse was tested in a 50 × 50 cm open field for 5 minutes. Behavior was recorded using an overhead camera (480×640 px, 15 fps), resulting in 18 videos. Using Python and OpenCV, RASAD tracked mouse position, calculated time spent in the 25 × 25 cm center zone, and measured total distance. Manual scoring by trained observers validated the automated data. Results: Compared to Ethovision, RASAD demonstrated approximately 75% agreement with manual scoring. In the control group, mice traveled an average of 1100 ± 150 cm and spent 50 ± 10 seconds in the center zone. Citicoline-treated mice exhibited slightly increased locomotion (1150 ± 130 cm) and center zone time (70 ± 12 seconds). In contrast, Ketamine-treated mice spent significantly more time in the center (110 ± 18 seconds) with a reduced total distance traveled (980 ± 110 cm), indicating a strong anxiolytic effect with minimal impact on overall activity. Conclusion: RASAD provides an efficient and affordable solution for OFT analysis, especially for small labs. With further development, incorporating machine learning algorithms could enhance its accuracy and expand its capabilities, making it a powerful, low-cost alternative to expensive commercial tools like Ethovision.

کلمات کلیدی

Python,Artificial Intelligence,Open Field Test, Anxiety, Mouse

بازخورد

نظر شما چی هست؟ بر روی ستاره های مورد نظرتون کلیک کنید.

0
  • Review rating
  • Review rating
  • Review rating
  • Review rating
  • Review rating
میانگین نمرات

دیدگاه ها (0)

تاکنون دیدگاهی منتشر نشده است. شما اولین نفر باشید!

ارسال یک دیدگاه