ارزیابی تأثیر فیلترهای پیش‌پردازش تصویر بر عملکرد شبکه های عصبی کانولوشنی در تشخیص سرطان سینه از تصاویر ماموگرافی‌

Amirmohammad Kazemi *, MohammadAli Shahmohammadi ℗, Meysam Abasi

ارزیابی تأثیر فیلترهای پیش‌پردازش تصویر بر عملکرد شبکه های عصبی کانولوشنی در تشخیص سرطان سینه از تصاویر ماموگرافی‌

کد: G-1647

نویسندگان: Amirmohammad Kazemi *, MohammadAli Shahmohammadi ℗, Meysam Abasi

زمان بندی: زمان بندی نشده!

برچسب: پردازش سیگنال های پزشکی

دانلود: دانلود پوستر

خلاصه مقاله:

خلاصه مقاله

Background and aims: In today's world, breast cancer remains the leading cause of mortality among women, making early detection crucial for improving treatment outcomes and survival rates. Convolutional Neural Networks (CNNs) have significantly advanced the detection of malignant tumors in mammograms by automating the classification process. However, the quality of mammographic images often poses a challenge, as noise, low contrast, and other artifacts reduce the effectiveness of CNN-based models. To address these limitations, preprocessing filters can be applied to enhance image quality and improve detection performance. In this study, we aimed to determine which preprocessing filter—Gaussian Blur, Sobel Edge Detection, Contrast Limited Adaptive Histogram Equalization (CLAHE), or Gabor Filter—yields the highest performance in improving CNN accuracy for breast cancer detection. Methods: We systematically evaluated the impact of four preprocessing techniques on mammogram datasets. Gaussian Blur was used for noise reduction, Sobel Edge Detection for edge enhancement, CLAHE for contrast improvement, and Gabor Filter for texture analysis. A CNN model was trained and tested on each filtered dataset, and the results were compared against a baseline CNN trained on unprocessed images to quantify improvements in classification accuracy and robustness. Results: Our findings highlight the preprocessing filter that provides the most substantial improvement in CNN performance for detecting breast cancer in mammograms, showcasing its potential for clinical applications. Conclusion: Identifying the optimal preprocessing technique enhances CNN-based breast cancer detection, leading to greater diagnostic precision, improved patient outcomes, and advancements in medical imaging technology.

کلمات کلیدی

Image Preprocessing, Diagnostic Accuracy, Medical Imaging

بازخورد

نظر شما چی هست؟ بر روی ستاره های مورد نظرتون کلیک کنید.

0
  • Review rating
  • Review rating
  • Review rating
  • Review rating
  • Review rating
میانگین نمرات

دیدگاه ها (0)

تاکنون دیدگاهی منتشر نشده است. شما اولین نفر باشید!

ارسال یک دیدگاه