تشخیص خودکار آمبولی ریه از اسکن‌های توموگرافی کامپیوتری با استفاده از یادگیری عمیق

Parastoo Honarvar Namin * ℗, حسن قبادی مراللو, رنا جنتی, اسما سلمانی, محمد علی جواد زاده

تشخیص خودکار آمبولی ریه از اسکن‌های توموگرافی کامپیوتری با استفاده از یادگیری عمیق

کد: G-1606

نویسندگان: Parastoo Honarvar Namin * ℗, حسن قبادی مراللو, رنا جنتی, اسما سلمانی, محمد علی جواد زاده

زمان بندی: زمان بندی نشده!

برچسب: پردازش سیگنال های پزشکی

دانلود: دانلود پوستر

خلاصه مقاله:

خلاصه مقاله

Background and aims: Since pulmonary embolism is a dangerous and life-threatening disease and the use of lung computed tomography presents challenges, employing modern methods and computer-aided diagnosis can accelerate the treatment and diagnostic process while reducing the workload of radiologists. The primary goal of this study is to utilize deep learning techniques to enhance computer-assisted detection of pulmonary embolism. To achieve this, we propose a classification-guided detection approach that effectively leverages probabilistic inference from the classifier to guide detection predictions, contributing a novel advancement in the field of automated embolism diagnosis. Method: Our classification system incorporates an attention-guided convolutional neural network (AG-CNN) that utilizes local texture information through an attention mechanism. This approach mimics the human expert method, which first considers the overall appearance of the image and then focuses on local regions before making a decision. Results: The classifier demonstrates strong performance on our dataset, achieving an area under the receiver operating characteristic curve (AUROC) of 0.927, a sensitivity of 0.862, a specificity of 0.879, and an F1-score of 0.805 with the Inception v3 backbone architecture. Furthermore, AG-CNN outperforms the DenseNet-121 baseline model, achieving a notable 1.8% improvement in AUROC. While previous research has primarily focused on detecting embolisms in major arteries, our use of advanced object detection models and hybrid techniques significantly improves the accuracy of detecting small embolisms in peripheral arteries. Finally, our proposed classification-guided detection approach further refines diagnostic metrics and contributes to new advancements in the field, achieving mAP50, sensitivity, and F1-score values of 0.846, 0.901, and 0.779, respectively outperforming previous benchmarks. With a substantial 3.7% improvement in mAP50. Conclusion: our research aims to enhance patient care for pulmonary embolism by integrating AI solutions into clinical workflows, highlighting the potential for human-AI collaboration in medical diagnosis.

کلمات کلیدی

,Computed Tomography,Deep learning, Pulmonary Embolism

بازخورد

نظر شما چی هست؟ بر روی ستاره های مورد نظرتون کلیک کنید.

0
  • Review rating
  • Review rating
  • Review rating
  • Review rating
  • Review rating
میانگین نمرات

دیدگاه ها (0)

تاکنون دیدگاهی منتشر نشده است. شما اولین نفر باشید!

ارسال یک دیدگاه