تشخیص الکلیسم با استفاده سیگنال های الکتروانسفالوگرافی مبتنی بر یادگیری عمیق

Saghar Salari * ℗, Fatemeh Bafahm, Maryam Paran

تشخیص الکلیسم با استفاده سیگنال های الکتروانسفالوگرافی مبتنی بر یادگیری عمیق

کد: G-1155

نویسندگان: Saghar Salari * ℗, Fatemeh Bafahm, Maryam Paran

زمان بندی: زمان بندی نشده!

برچسب: سیستم های تصمیم یار بالینی

دانلود: دانلود پوستر

خلاصه مقاله:

خلاصه مقاله

Background: The diagnosis and treatment of alcoholism pose significant challenges due to its complex etiology and varied manifestations. Electroencephalography (EEG) has emerged as a promising tool for understanding the neurobiological underpinnings of alcoholism. In this study, we propose a novel approach for EEG classification normal and alcoholic by deep learning (DL) techniques. Methods: We conducted a comprehensive review of existing literature from 2018 to 2023, utilizing databases such as Google Scholar, PubMed, Medline, Science Direct, Coherence, Embase, Proquest, Magiran Library, and SID. The chosen keywords for our search included "Machine learning”, "Deep learning", "Neural Network", "Artificial Intelligence", "Algorithms", "Electroencephalography", “EEG Signals”, “Alcohol Use Disorder”, “Alcohol Usage Severity”, “Alcoholism”, "Diagnosis", “Detection”, “Classification”, "Systematic Review", and "Meta-Analysis". This method allowed us to gather a substantial body of relevant research to analyze and synthesize the findings. Results: This article provides a comprehensive review of the latest advancements in utilizing deep learning techniques for EEG-based diagnosis of alcoholism. It synthesizes findings from various studies employing convolutional neural networks (CNNs), recurrent neural networks (RNNs), and hybrid architectures to analyze EEG signals associated with alcohol use disorder (AUD). The review highlights the potential of deep learning models in identifying biomarkers and patterns indicative of alcohol-related neural alterations, thus facilitating early diagnosis and personalized treatment approaches. Furthermore, it discusses challenges, future directions, and ethical considerations in the application of deep learning to EEG-based diagnosis of alcoholism. Overall, this review underscores the transformative impact of deep learning in enhancing our understanding and management of alcohol use disorder through EEG analysis. Conclusion: Looking ahead, the potential implications of DL in EEG-based alcoholism diagnosis are vast. The future holds the promise of personalized and proactive cardiovascular care, where DL augments the diagnostic capabilities of healthcare professionals, ultimately saving lives and reducing the burden of cardiovascular diseases on a global scale.

کلمات کلیدی

Deep Learning, Electroencephalography, Alcoholism

بازخورد

نظر شما چی هست؟ بر روی ستاره های مورد نظرتون کلیک کنید.

0
  • Review rating
  • Review rating
  • Review rating
  • Review rating
  • Review rating
میانگین نمرات

دیدگاه ها (0)

تاکنون دیدگاهی منتشر نشده است. شما اولین نفر باشید!

ارسال یک دیدگاه